55,643 research outputs found

    Deployment/retraction ground testing of a large flexible solar array

    Get PDF
    The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions

    Large-eddy simulation and wall modelling of turbulent channel flow

    Get PDF
    We report large-eddy simulation (LES) of turbulent channel flow. This LES neither resolves nor partially resolves the near-wall region. Instead, we develop a special near-wall subgrid-scale (SGS) model based on wall-parallel filtering and wall-normal averaging of the streamwise momentum equation, with an assumption of local inner scaling used to reduce the unsteady term. This gives an ordinary differential equation (ODE) for the wall shear stress at every wall location that is coupled with the LES. An extended form of the stretched-vortex SGS model, which incorporates the production of near-wall Reynolds shear stress due to the winding of streamwise momentum by near-wall attached SGS vortices, then provides a log relation for the streamwise velocity at the top boundary of the near-wall averaged domain. This allows calculation of an instantaneous slip velocity that is then used as a ‘virtual-wall’ boundary condition for the LES. A Kármán-like constant is calculated dynamically as part of the LES. With this closure we perform LES of turbulent channel flow for Reynolds numbers Re_τ based on the friction velocity u_τ and the channel half-width δ in the range 2 × 10^3 to 2 × 10^7. Results, including SGS-extended longitudinal spectra, compare favourably with the direct numerical simulation (DNS) data of Hoyas & Jiménez (2006) at Re_τ = 2003 and maintain an O(1) grid dependence on Re_τ

    Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence

    Get PDF
    We report direct numerical simulation (DNS) and large-eddy simulation (LES) of statistically stationary buoyancy-driven turbulent mixing of an active scalar. We use an adaptation of the fringe-region technique, which continually supplies the flow with unmixed fluids at two opposite faces of a triply periodic domain in the presence of gravity, effectively maintaining an unstably stratified, but statistically stationary flow. We also develop a new method to solve the governing equations, based on the Helmholtz–Hodge decomposition, that guarantees discrete mass conservation regardless of iteration errors. Whilst some statistics were found to be sensitive to the computational box size, we show, from inner-scaled planar spectra, that the small scales exhibit similarity independent of Reynolds number, density ratio and aspect ratio. We also perform LES of the present flow using the stretched-vortex subgridscale (SGS) model. The utility of an SGS scalar flux closure for passive scalars is demonstrated in the present active-scalar, stably stratified flow setting. The multi-scale character of the stretched-vortex SGS model is shown to enable extension of some second-order statistics to subgrid scales. Comparisons with DNS velocity spectra and velocity-density cospectra show that both the resolved-scale and SGS-extended components of the LES spectra accurately capture important features of the DNS spectra, including small-scale anisotropy and the shape of the viscous roll-off

    Large-eddy simulation of large-scale structures in long channel flow

    Get PDF
    We investigate statistics of large-scale structures from large-eddy simulation (LES) of turbulent channel flow at friction Reynolds numbers Re_τ = 2K and 200K (where K denotes 1000). In order to capture the behaviour of large-scale structures properly, the channel length is chosen to be 96 times the channel half-height. In agreement with experiments, these large-scale structures are found to give rise to an apparent amplitude modulation of the underlying small-scale fluctuations. This effect is explained in terms of the phase relationship between the large- and small-scale activity. The shape of the dominant large-scale structure is investigated by conditional averages based on the large-scale velocity, determined using a filter width equal to the channel half-height. The conditioned field demonstrates coherence on a scale of several times the filter width, and the small-scale–large-scale relative phase difference increases away from the wall, passing through π/2 in the overlap region of the mean velocity before approaching π further from the wall. We also found that, near the wall, the convection velocity of the large scales departs slightly, but unequivocally, from the mean velocity

    Robust image and video coding with pyramid vector quantisation

    Get PDF

    Roughness effects in turbulent forced convection

    Get PDF
    We conducted direct numerical simulations (DNSs) of turbulent flow over three-dimensional sinusoidal roughness in a channel. A passive scalar is present in the flow with Prandtl number Pr=0.7Pr=0.7, to study heat transfer by forced convection over this rough surface. The minimal channel is used to circumvent the high cost of simulating high Reynolds number flows, which enables a range of rough surfaces to be efficiently simulated. The near-wall temperature profile in the minimal channel agrees well with that of the conventional full-span channel, indicating it can be readily used for heat-transfer studies at a much reduced cost compared to conventional DNS. As the roughness Reynolds number, k+k^+, is increased, the Hama roughness function, ΔU+\Delta U^+, increases in the transitionally rough regime before tending towards the fully rough asymptote of κm1log(k+)+C\kappa_m^{-1}\log(k^+)+C, where CC is a constant that depends on the particular roughness geometry and κm0.4\kappa_m\approx0.4 is the von K\'arm\'an constant. In this fully rough regime, the skin-friction coefficient is constant with bulk Reynolds number, RebRe_b. Meanwhile, the temperature difference between smooth- and rough-wall flows, ΔΘ+\Delta\Theta^+, appears to tend towards a constant value, ΔΘFR+\Delta\Theta^+_{FR}. This corresponds to the Stanton number (the temperature analogue of the skin-friction coefficient) monotonically decreasing with RebRe_b in the fully rough regime. Using shifted logarithmic velocity and temperature profiles, the heat transfer law as described by the Stanton number in the fully rough regime can be derived once both the equivalent sand-grain roughness ks/kk_s/k and the temperature difference ΔΘFR+\Delta \Theta^+_{FR} are known. In meteorology, this corresponds to the ratio of momentum and heat transfer roughness lengths, z0m/z0hz_{0m}/z_{0h}, being linearly proportional to z0m+z_{0m}^+, the momentum roughness length [continued]...Comment: Accepted (In press) in the Journal of Fluid Mechanic
    corecore